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This examination consists of four problems, with in total 16 parts. The 16
parts carry equal weight in determining the final result of this examination.

h̄ = c = 1. The standard representation of the 4 × 4 Dirac gamma-matrices
is given by:

γ0 =

(

12 0
0 −12

)

, γk =

(

0 σk

−σk 0

)

, γ5 = iγ0γ1γ2γ3 =

(

0 12

12 0

)

.

PROBLEM 1

A spinor field transforms under Lorentz transformations as

ψ′(x′) = S(Λ)ψ(x) , (1.1)

where Λ is the Lorentz transformation matrix and (xµ)′ = Λµ
νx

ν .

1.1 Show that the Dirac equation is covariant under Lorentz transformations
if

S(Λ)−1γµS(Λ)Λµ
ν = γν

and that this implies the equivalent relation

S(Λ)−1γµS(Λ) = Λµ
νγ

ν . (1.2)

1.2 Determine the transformation of ψ̄(x) under Lorentz transformations.
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1.3 Show that ψ̄(x)ψ(x) is invariant under Lorentz transformations if

S−1 = γ0S†γ0 . (1.3)

1.4 The interaction term of the photon field and the Dirac field in quantum
electrodynamics,

ψ̄(x)γµψ(x)Aµ(x) , (1.4)

must be invariant under Lorentz transformations. How should the photon
field Aµ(x) transform to achieve this invariance?

PROBLEM 2

The Lagrangian density for the Dirac field is

L = ψ̄(x)(iγµ∂µ −m)ψ(x) . (2.1)

2.1 Define the canonical momentum corresponding to the field ψ, and show
that it equals

π(t, ~x) = iψ†(t, ~x) . (2.2)

2.2 The Hamiltonian is defined as

H =

∫

d3x (π(t, ~x)∂0ψ(t, ~x) − L) . (2.3)

Show that this equals

H = −

∫

d3x ψ̄(iγk∂k −m)ψ . (2.4)

2.3 The invariance of L under transformations

ψ → ψ′ = e−ieθψ (2.5)

gives rise to a current jµ ≡ −eψ̄γµψ. Show that, if the Dirac equation for ψ
(and ψ̄) holds, jµ satisfies

∂µj
µ = 0 . (2.6)
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2.4 Show that

Q =

∫

d3x j0 (2.7)

is constant in time if ψ goes sufficiently fast to zero at large |~x|.

2.5 Show that for four arbitrary operators A,B,C,D the following commu-
tation relation holds:

[AB,CD] = −C{D,A}B + {C,A}DB −AC{D,B} + A{C,B}D . (2.8)

2.6 The equal-time anticommutation relations for the Dirac field are

{ψa(t, ~x), πb(t, ~y)} = iδabδ
3(~x−~y) , {ψa(t, ~x), ψb(t, ~y)} = {πa(t, ~x), πb(t, ~y)} = 0 .

(2.9)
Show that under the same conditions as in (2.4)

[H,Q] = 0 . (2.10)

PROBLEM 3

The Dirac field ψ(x) satisfies equal-time anti-commutation relations

{ψa(x), ψ
†
b(y)}x0=y0 = δabδ

3(~x− ~y) , (3.1)

where a, b = 1, . . . , 4 are spinor indices. For spinor fields we use the following
definition of the time-ordered product

T (ψ(x)ψ̄(y)) = θ(x0 − y0)ψ(x)ψ̄(y) − θ(y0 − x0)ψ̄(y)ψ(x) . (3.2)

3.1 In which sense does this definition differ from the definition of the time-
ordered product of two Klein-Gordon fields?

3.2 Using the definition (3.2), show that

(iγµ∂xµ −m)T (ψ(x)ψ̄(y)) = iδ4(x− y) . (3.3)

3.3 Given that (∂2
x +m2)∆F(x− y) = −δ4(x− y), show that

T (ψ(x)ψ̄(y)) = i(iγµ∂xµ +m)∆F(x− y) (3.4)

satisfies (3.3).
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PROBLEM 4

Consider the annihilation of an electron-positron pair into two photons:

e+ + e− → γ + γ ,

with momenta

e+ : p1 = (E1, ~p1), e
− : p2 = (E2, ~p2), photons : k1 = (ω1, ~k1), k2 = (ω2, ~k2).

The process takes place in the laboratory frame:

~p2 = 0 .

4.1 Why is ωi = |~ki|?

4.2 Express E1 and ~p1 in terms of the energies and momenta of the two
photons.

4.3 The two photons appear under an angle θ in this process: ~k1 · ~k2 =
ω1ω2 cos θ. Express cos θ in terms of m,ω1, ω2.
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